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Examples of Turbulence Models for Incompressible Flows

W. Rodi* ' :
University of Karisruhe, Karlsruhe, West Germany

The paper describes some currently available models for calculating turbulent stresses and heat or mass fluxes
in incompressible flow which are more generally applicable than the Prandtl mixing-length hypothésis. These
include models employing transport equations for the intensity and the length scale of the turbulent motion,
notably the k-e model, as well as second-order closure schemes based on transport equations for the turbulent
stresses and heat or mass fluxes themselves. The individual models are introduced briefly, their merits and
demerits are discussed, and typical examples of calculations relevant to aerospace problems are presented.
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Nomenclature
c =constants in turbulence model
o = friction coefficient =7,/ 2o U2,
¢, = specific heat
D,d =diameter or other geometrical parameters
E = friction parameter in law of the wall [Eq. (8)]
G =buoyancy production/destruction of k= — 8g,u;¢
G; =buoyancy production/destruction of
uu;=—pB(gu;o+gué)
= gravitational acceleration
=acceleration parameter =vdU_ /dx/ U2,
=turbulent kinetic energy = /2u,u;
=length scale of turbulence
=Prandtl mixing length
P =stress production of k= —u,u; u;u0U, /9x;
Py = stress production of uu;
= =uudU,/3x,—u, u,,BU /9x,
q = heat flux at surface
R =radius
Re = Reynolds number
r =radial coordinate
St =Stanton number = q/pc, U, (T, ~T,,)
T =temperature
U,V,W =mean velocity components.in x,y,z direction
u,v,w =fluctuating velocity components in x,y,z direction
U; =mean-velocity component in x; direction
u; = fluctuating velocity component in x; dII'CCtIOI]
U, . = friction velocity=v'7,,/p
U, = freestream velocity
X,V,2 =coordinates ‘
X; = coordinates in tensor notation .
8 =volumetric expansion coefficient
2% =constant in pressure-strain model
6 =shear-layer thickness
0 ~ =Kronecker delta =1 for i=jand =0 for 1 #;
€ =dissipation rate of k&
K “=von Kdrmdn constant
v =kinematic molecular viscosity
v, =eddy (or turbulent) viscosity
0 = fluid density ,
o, = turbulent Prandtl/Schmidt number
Ope =constants in k- model
Ty =wall shear stress
o =mearn scalar quantity
¢ = fluctuating scalar quantity
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Subscripts

J =jet

w =wall

0 = mainstream

o0 = condition in external (free) stream

Introduction

N spite of recént advances in the direct solution of the time-

dependent Navier-Stokes equations and in’ large-eddy
simulation techniques,!? the only economically feasible way
to solve practical turbulent flow problems is still the use of
statistically averaged equations governing mean-flow
quantities, In these equations, the transport of momentum,
heat, and mass by turbulent motion is represented by
correlations between fluctuating quantities. The momentum
equations contain the turbulent or Reynolds stresses — pu;u;,
and the averaged scalar transport equation contains the
turbulent heat or mass flux — pu;¢, where u; and u; are
fluctuating velocity components and ¢ is the fluctuating scalar
quantity. Because of the appearance of these terms, the mean-
flow equations are not closed, and a turbulence model is
necessary to determine these turbulent transport terms before
the equations can be solved.

One of the first turbulence models proposed, the Prandtl?
mixing length hypothesis, is still among the most widely used
models. It employs the eddy viscosity/diffusivity concept,
which relates the turbulent transport terms to the gradients of
mean-flow quantities. For thin shear layers, this concept
reads: .

— aU o b 0% 0
—uv=v, — —Uvp=— —
: "1 5y 5, 3y

which by a modified Reynolds analogy assumes that the
turbulent scalar transport is closely related to the momentum
transport and o, is the turbulent Prandtl/Schmidt number.
The Prandtl mixing-length hypothesis calculates the
distribution of the eddy viscosity », by relating it to the local
mean-velocity gradient:

U
v, =f ay €3

This relation, which is again written in a form suitable for
thin shear layers, involves a single unknown parameter—the
mixing length {,,—whose distribution over the flowfield has to
be prescribed with the aid of empirical information (see, e.g.,
Ref. 4). Only about 15 years ago, computers and numerical
techniques became sufficiently advanced to solve the partial
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differential equations for flows of practical interest, and
during this period the mixing-length model has been tested for
and applied to a large variety of flow situations, most of them
in the class of thin shear layers. In the process of this testing,
great experience has been gathered in prescribing the mixing-
length distributions for such layers, in particular for wall
boundary layers (Patankar and Spalding, Cebeci and
Smith,% Crawford and Kays’), and much use has been made
of the mixing-length model for practical calculations in the
aerospace industry. This extensive testing has also brought to
light the limitations of the mixing-length hypothesis, in
particular the lack of universality of the empirical input. One
of the main shortcomings of this hypothesis is that it is based
on the implied assumption that turbulence is in local
equilibrium, which means that, at each point in the flow,

turbulence energy is dissipated at the same rate as it is °

produced, so that there can be no influence of turbulence
production at other points in the flow or at earlier times.
Hence, the mixing-length hypothesis cannot account for
transport and history effects of turbulence. As a result, the
mixing-length hypothesis predicts the eddy viscosity and
diffusivity to be zero whenever the velocity gradient is zero,
which leads to unrealistic simulations in many cases (see, €.g.,
Ref. 4).

A further disadvantage of the mixing-length model is that
effects on the turbulence due to buoyancy, rotation, or
streamline curvature can be accounted for in an entirely
empirical way only, and it is difficult to devise generally
applicable empirical relations for these effects. Although
great experience has been gained on the distribution of the
mixing length ¢, in simple shear layers, problems arise in
determining ¢,, in cases when several shear layers interact. The
empirical specification for ¢,, is particularly difficult, and
sometimes even impossible, in flows that are more complex
than shear layers, as for example in separated flows or in
general three-dimensional flows.

In striving for more generally applicable models, turbulence -

models have been proposed that account for transport and

history effects of turbulence by introducing transport .

equations for turbulence quantities. The present paper
describes and compares several of these models. In order of
increasing complexity, one-equation models employing a
transport equation for the turbulent kinetic energy, the widely
used k-¢ model, and full as well as truncated second-order
closure models based on transport equations for the in-
dividual Reynolds stresses and turbulent heat or mass fluxes
are discussed briefly, with an emphasis on the latter two types
of models because they are the only ones that are applicable to
flows more complex than thin shear layers. For these models,
examples of applications are presented whose successful
calculation with the mixing-length hypothesis, if possible at
all, would require empirical modification. ~

One-Equation Models

The simplest models accounting for the transport and
" history effects of .turbulence use a transport equation for a
suitable velocity scale of the turbulent motion. Usually as
such a scale, Vk is taken, where k is the kinetic energy of the
turbulent motion, which is a measure of the intensity of the
turbulent fluctuations in the three directions. In most models,
the following transport equation for k is employed:

ok o, Ok _ 0 ( v, ok ) -9, _ 3
- — = —— — ) —Uu.u. — —e

ot "ox;  ox; \ o, 9x; " ax;

rate of convec- diffusion P =production dissipation

change tion

This equation is exact as derived from the Navier-Stokes
equations except for the diffusion term, in which the diffusion
flux of k has been assumed to be proportional to the gradient
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of k (o, is an empirical constant). Equation (3) describes how
the rate of change of & is balanced by convective transport by
the mean motion, diffusive transport by turbulent motion,
production by interaction of turbulent stresses and mean-
velocity gradients, and destruction by the dissipation e. In
buoyant flows, an additional buoyancy production/
destruction term is present.*

In one-equation models, the dissipation rate e is usually
determined from

e=cy, (k32 /L) @)

which is an outcome of dimensional analysis when one
assumes that the dissipation rate € is governed by large-scale
turbulent motion and that this motion is characterized by the
velocity scale vk and the length scale L. Two principal

-suggestions have been made to relate the turbulent stresses to

the kinetic energy k determined from a transport equation.
The first suggestion employs the eddy-viscosity concept, in
which case dimensional analysis yields the so-called
Kolmogorove8-Prandtl® expression

v, =C;\/FL &)

The other suggestion is due to Bradshaw!® and his co-
workers, who did not employ the eddy-viscosity concept but
converted, the kinetic-energy equation into a transport
equation for the shear stress uv by assuming a direct link
between uv and k. The original model was intended only
for wall boundary layers where experiments suggest that
uv~0.3 k. Bradshaw et al.1? further did not approximate the
diffusion of & by a gradient-diffusion model but assumed
instead that the diffusion flux of k is proportional to a bulk
velocity. '

In one-equation models, the length scale L appearing in
Egs. (4) and (5) is usually determined from simple empirical
relations similar to those used for the mixing length ¢,,. This
empirical specification works quite well for simple shear
layers, and therefore Bradshaw et al.’s!® method was used
with great success in many wall boundary-layer calculations.
In complex flows, however, L is no easier to prescribe than
the mixing length £,,. For this reason, the application of one-
equation models was limited mainly to shear-layer flows.
Various authors have tried to develop formulas for
calculating L in general flows. A discussion on this can be
found 'in Rodi,* who concluded that these formulas were
insufficiently tested and also rather complex and expensive of
computing time. Hence, the trend has been to use two-
equation models that also determine the length scale from a
transport equation.

One-equation models using the k equation (3) and ¢, and ¢,
in Eqs. (4) and (5) as fixed empirical constants are applicable
only to flows or flow regions where the local turbulent
Reynolds number Re,=v, /v is sufficiently high. Hence, they
are not applicable very near walls, and the viscous sublayer
has to be bridged by wall functions, as given in the next
section. Hassid and Poreh!' and Norris and Reynolds!213
have proposed low-Reynolds-number ~ versions of one-
equation models that allow an integration right to the wall. In
these models, an additional, exact, viscous diffusion term is
included in the k equation and some of the empirical constants
are replaced by functions of the turbulent Reynolds number
Re. Such models work well in boundary layers with zero and
adverse pressure gradients. Hassid and Poreh’s model,
however, gives fairly poor predictions for strongly ac-
celerating boundary layers (see Fig. 5 below), and Norris and
Reynolds report that such flows could be predicted well only
when an empirical modification to the length scale is in-
troduced which accounts for the influence of the acceleration.

N\
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The k-¢ Model

The length scale of the turbulent motion is subject to
transport and history processes in a similar way to the tur-
bulent energy k. In order to account for these processes,
models were suggested that use a transport equation for the
length scale L, and the difficulties in finding generally valid
formulas for prescribing or calculating L have stimulated the
use of such equations. The dependent variable of the length-
scale-determining equation must not, however, be the length
scale L itself; any combination with £ will suffice since & is
known from the solution of the k equation. Equations for
various combinations have been proposed, but the k-e model
using an equation for exk3/2/L has become most popular,
mainly because of the practical advantage over other
equations that the e equation requires no extra terms near
walls. Because of its popularity, discussion is restrlcted here to
the k-e model.

The k-¢ model employs the eddy viscosity/diffusivity
concept (given below for general flows) and relates the eddy
viscosity », to k and e via the Kolmogorov-Prandtl relation
[Eq. (5)] (noting that ecck3/2/L):

i

oU, U\ 2 K2
— + )— —k6 = - 6
(axj ax, /3 n=aoe o ©

The distribution of k is determined from Eq. (3) and that of €
from the following transport equation:

€2

- de de a3 v, 66)
=_— P 7
( +c, P Co @)

F+ "E)Z,T’ax,. o, Ox;

An exact € equation can be derived from.the Navier-Stokes
equations, but such drastic model assumptions have to be
introduced that the resulting € equation has highly empirical
character. The terms in the e equation (7) represent physical
. processes similar to those. discussed already for the &
equation; that is, the rate of change of ¢ is balanced by
convective and diffusive transport and by production and
destruction processes.

The k- model contains the five empirical constants ¢, o,
o, C,;, C., and, when the turbulent heat and mass transfer is
to be calculated, also the turbulent Prandtl/Schmidt number
o,. The standard values for these constants and also a more
deta1led discussion of the k-e model are given in Refs. 4 and
14. The standard model presented so far is applicable only to
flows or flow regions with high turbulent Reynolds number
Rer=v,/v and cannot be applied ‘near walls, where viscous
effects become dominant. Hence, the so-called wall-function
approach is used in order to bridge the viscous sublayer. This
approach assumes that, at a point with wall distance y, just
outside the viscous sublayer, the velocity components parallel
to the wall follow the logarithmic law of the wall and the
turbulence is in local equilibrium, so that the production P is
equal to the dissipation e. With these assumptions, the
resultant velocity parallel to the wall U, the kinetic energy &,

and the dissipation rate €, at point y_ are usually related to the '

resultant friction velocity U_ by the following relations

U, 1. (.U U2 v
‘ =—en(Eﬂ> k=L  e=—2 (8
U, « v Ve, K.

P

Over the last 10 years, the k-e¢ model has been applied to a
large number of different flows so that it is now one of the
best-tested turbulence models. In the course of testing it has
.been found to be significantly more general than the mixing-
length hypothesis. With the same empirical input, the model
can simulate many free shear layers's as well as wall boundary
layers and duct flows. An example for a free-shear-layer
calculation is given in Fig. 1, which shows the development of
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the velocity profile in a mixing layer from wall boundary-
layer profiles at the end of a splitter plate. Calculations are
included as obtained with the mixing-length hypothesis, a
one-equation model using the Kolmogorov-Prandtl Eq. (5)
with L proportional to the local shear-layer width, and the k-¢
model, all starting from the same initial profile. As can be
seen, development of the velocity profile is described best by
the k-e model. The less satisfactory results obtained with the
other two models point to the difficulties in specifying the
length-scale distribution in situations where two shear layers
interact as do the two wall boundary layers in this case.
Scheuerer!? used the k-e model to calculate wall boundary
layers under the influence of freestream turbulence, and Fig. 2

i
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Fig. 3 Velocity profiles in model combustion chamber;
= predictions; o = measurements (from Ref. 20).
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Fig. 4 Round jet in boimded' cross flow (from Ref. 21); a) flow
configuration; b) jet trajectory; ¢) temperature contours for J=72 at
x/D=12,

_shows that the friction coefficient ¢, under such influence is
well predicted. It is important to note that the experimentally
observed freestream turbulence entered the calculations only
in the form of boundary conditions for k and e but that the
turbulence model itself was unchanged. In contrast, the
simulation of freestream turbulence effects with the mixing-
length hypothesis would require empirical adjustments of the
model. In practical calculations, errors in ¢, of up to 10%

must be expected when such adjustments are not made. One-

equation models would, however, give results similar to those
obtained with the k-e model.

Many successful applications of the k-e model to separating
flows have been reported in the literature, but it should be
mentioned that success was much better for confined flows
and that the calculations were not always satisfactory for
unconfined, separated flows (e.g., near wake behind a disk).
It should also be mentioned that in separated flow
calculations the results are often subject to numerical inac-
curacies, ! so that it is not the turbulence model alone that is
responsible for lack of agreement with experimental data. An
example of a confined flow calculation is given in Fig. 3,
which shows predicted and measured velocity profiles in a
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Fig. 5 Variation of Stanton number in an accelerated boundary
layer.

model combustion chamber. Here the simulation is of an
experimental situation without combustion, where all the
fluid entered through the annular inlet with a swirl component
superposed. The development of this rather complex
axisymmetric flow can be seen to be well simulated by the k-¢
model. Even more complex three-dimensional flows have also
been calculated with the k-¢ model, and Fig. 4 shows the
application to a jet in a bounded cross flow. Predictions are
given for various ratios J of jet-to-cross-flow momentum, and
for one such ratio the temperature distribution is shown for a
cross section downstream of the jet discharge. The agreement
between predictions and measurements is not perfect, par-
ticularly for the higher values of the parameter J, but in view
of the fact that the calculations were influenced somewhat by
numerical inaccuracies,?! the results for such a complex flow
are still encouraging because the qualitative agreement with
the experiments is good and the gross featurés of the flow are
well predicted. :

Compilations of further examples of the application of th
k-e model can be found in Refs. 4, 14, and 15. These papers
also discuss a few exceptional flow situations that cannot be
calculated satisfactorily with the standard constants in the
model, notably so-called weak free shear layers, (e.g., far
wakes), where overall turbulence production is small com-
pared with dissipation, and axisymmetric jets. The references
give empirical functions to replace some of the constants so
that these special flows can also be predicted with the k-¢
model.

So far the discussion has been confined to the high-
Reynolds-number version of the k-e model, which cannot be
applied in the immediate vicinity of a wall. Jones and
Launder?? have proposed a low-Reynolds-number version
with which the calculations can be carried right to the wall. In
this model, viscous diffusion of &k and e is included in Egs. (3)
and (7). Effectively this means that »,/0, and »,/o, are
enhanced by the molecular viscosity » in the first terms on the
right-hand side of Egs. (3) and (7). Further, the constants c,
and c,, are replaced by functions of the turbulent Reynolds
number Re,=v, /v, and an additional term is added to the ¢

_equation in order to obtdin a realistic £ distribution in the

viscous sublayer. For flow regions with high Re, the model is
identical to the high-Reynolds-number k-¢ model discussed
above. Jones.and Launder applied their model successfully to
calculate the near-wall region in high-Reynolds-number pipe
flow, the friction coefficient and the velocity profile in low-
Reynolds-number (but still fully turbulent) pipe flow, and
various strongly accelerating boundary layers such as sink
flow in which relaminarization occurred. Gibson?* has made
heat-transfer calculations for the accelerating boundary layer
investigated by Moretti and Kays?® with both the Jones-
Launder k-e model and the one-equation model of Hassid and
Poreh.!! The predicted variation of the Stanton number along
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the plate is compared with the measurements in Fig. 5, where
also the'variation of the acceleration parameter K is given.
The fall in Stanton number in the accelerated flow and the
subsequent recovery are simulated well by the k-e model,
whereas Hassid and Poreh’s one-equation model fails to
reproduce these effects. The predicted Stanton number up-
stream of the acceleration is somewhat too high because, for
simplicity, the change in wall temperature at x=2.1 ft has
been taken as a step change rather than as the gradual
decrease that occurred in the experiment. An important
conclusion from Fig. 5 is that acceleration considerably in-
fluences the length scale in a turbulent boundary layer and
that this influence is simulated rather well by the k-e¢ two-
equation model without additional empirical input, whereas
one-equation models would require such input (see also Ref.
12). A comparison of the performance of eight.low-Reynolds-
number two-equation models can be found in Ref. 26.

Turbulent-Stress/Flux Equation Models

The k-e¢ model is based on the eddy viscosity/diffusivity
concept, which is not valid under all circumstances. A greater
practical limitation is, however, that eddy viscosity and
diffusivity are assumed to be isotropic; that is, the same
values are taken for the various #;u;’s and u;¢’s. In complex
flows, eddy viscosity and diffusivity will certainly depend on
the stress or flux component considered, and the same is true
when turbulence is strongly influenced by body:forces acting
in a preferred direction, such as buoyancy forces. Further, all
models discussed so far assumed that the local state of tur-
bulence can be characterized by one velocity scale Vk and that
the individual u;u;’s can be related to this scale. In reality,
however, the individual #;u;’s may develop quite differently
in the flow, and when this is the case, the models discussed so
far will be too simple. In order to account for the different
development of the individual stresses, transport equations
for u,u; have been introduced and analogous equations also
- for the scalar fluxes u,;¢. These equations can be derived in
exact forms, but they contain higher-order correlations that
have to be approximated in order to obtain a closed system. A
particular advantage of deriving the exact equations is that
terms accounting for buoyancy, rotation, and other effects
are introduced automatically.

Models employing transport equations for u,u; and d) are
often called second-order-closure schemes, ancf a varlety of
such models have been proposed in the literature. Here only
one relatively simple model will be presented: that developed
by Launder and his co-workers,?”-22 which has been tested
already by application to a variety of flows. Somewhat dif-
ferent models have been developed by Lumley and his co-
workers?? and by Donaldson and his associates.3® Launder et
al.?” and Gibson and Launder?® proposed, respectively, the

following modeled transport equations for #,;u; and u;¢:
ouu; duu; d (k —_duu; au,; aU;
U, =Coo—\ T U Uy M= u; P
at dx; dx, \ € ax, ax, ax,
S~ \"\/f/ \,\/\/ i~
rate of convective diffusive transport P,-j = stress production
change transport
e/ 2 2 2
-c X (u,-uj— 56,7k> —c, (P,.j—— §6UP) -c; (GU— §6UG>

v_\/\—/

pressure strain

e 2 '
_B(g;uj¢+gjuj¢)—§€6ij ) (9)

G;; =buoyancy

if viscous
production

dissipation
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ot ax, ax, \ € 0xy 0x;
——— N~ R g \_"\/\/
rate of  convective diffusive trahsport mean-flow production |
change transport
€ — —_aU,
—Bg97 —cyy * ui¢+C2¢“f¢Ef +5488:67 10
\_/’\/y\,/
buoyancy pressure scrambling
production

The physical interpretation of the individual terms is indicated
in the equations. The rate of change, convective transport,
and mean-field as well as the buoyancy production terms
are exact, whereas the diffusion, pressure-strain/scram-
bling, and viscous dissipation terms are model. ap-
proximations. The diffusion flukes of #,u; and u;,¢ have been
expressed by simple gradient-diffusion models. Local isotropy
has been assumed to prevail so that the dissipation is the same
for all three normal-stress components (and thus % of the
total dissipation ¢) and so that the viscous destruction terms
for shear stresses and also for scalar fluxes originally ap-
pearing in the u;¢ equation are zero. The most important
approximations concern the pressure-strain/scrambling terms
since, for shear stresses and scalar fluxes, these are the main
terms to balance the production of these quantities. The
pressure-strain/scrambling model can be seen to consist of
three parts, the first one representing the interaction of
fluctuating quantities only, the second the interaction of
mean-strain and fluctuating quantities, and the thirdthe
effect of buoyancy forces. The pressure-strain/scrambling
model presented here is the simplest one that accounts for all
three mechanisms. More complex models have been proposed
but, except under extreme circumstances, have not been found
superior. In buoyant situations the ;¢ equation (10) involves
the fluctuating scalar ¢?, which in a second-order-closure
scheme is also determined from a transport equation as given
in Refs. 4 and 28. The dissipation rate € appearing in Eqgs. (9)
and (10) is determined from the e equation (7), with the
diffusion expression replaced by the more general relation

k*36>

diffusion, =c,— 9 ( u,
€ 9x, ax,

(11)

- which is in line with the diffusion expressions used in Egs. (9)

and (10).
In local-equilibrium shear layers, where the rate-of-change,

_convection, and diffusion terms in Eq. (9) are absent, the

ratio of the individual stresses u;u; to one another (and thus to
the kinetic energy k) are determined solely by the pressure-
strain model. Experiments have shown that these ratios are
significantly different in shear layers near to and remote from
walls: in near-wall turbulence, the level of the fluctuating
velocity normal to the surface is much damped whereas that
parallel to the main flow is enhanced relative to shear flows
without the influence of a wall. The pressure-strain model
introduced thus far does not produce these differences
because it does not account for any wall effects. Hence, a wall
correction must be introduced to the pressure-strain model
and, by analogy, also to the pressure-scrambling model in Eq.
(10). Various proposals for such corrections have been made.
For example, Launder, Reece, and Rodi?’ basically make the
empirical constants in the pressure-strain model a function of
the relative distance from the wall, L/yock3/2 /(ey). The details
of this approach can be found in Ref. 27. The empirical
constants appearing in the above uu; and ;¢ equations and
in the wall corrections are compiled in Ref. 4. Some examples
of calculations with stress-equation models will be presented
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below together with results obtained with algebraic stress
models.

Algebraic Stress/Flux Models

Models employing transport equations for the individual
turbulent stresses and fluxes constitute a quite large number
of differential equations whose solution is not a trivial task
and is also rather costly. Hence, for practical applications, it
would be desirable to use simplified models whenever
possible. For this reason, so-called algebraic stress/flux
models have been developed by simplifying the differential
transport equations such that they reduce to algebraic ex-
pressions but retain most of their basic features. Since it is the
convection and diffusion terms that make the transport
equations differential equations, these terms need to be
simplified by model approximations. The simplest ap-
proximation is of course to neglect these terms, but a more
generally valid approximation was proposed by Rodi,*' who
assumed that the transport of u,u; is proportional to the
transport of k (which is P+.G —¢) and that the proportionality
factor is the ratio u;u;/k. With such approximations in-
troduced, the transport equations yield algebraic expressions
for u;u; and u;¢ that contain the various production terms
appearing in the u;u; and ;¢ equations, respectively, and
thus the gradients of the mean-flow quantities. k£ and e appear
also in. the expressions, so that the k and e equations (3) and
(7) have to be added in order to complete the turbulence
model. The algebraic expressions together with the k¥ and ¢
equations hence form an extended k-¢ model. The actual
expressions are given in Ref. 4, where also a detailed
discussion on algebraic stress/flux modeling is presented.

Algebraic stress/flux models are suitable whenever the
transport of ©;u; and ;¢ is not very important, as this has
been either neglected or modeled rather crudely. The algebraic
stress relations are basically eddy viscosity formulas and are
therefore not applicable to countergradient-diffusion
situations that occur, for example, in the atmospheric
boundary layer. However, in flows associated with
engineering equipment, such situations are usually limited to
small areas so that they are not of great practical relevance, as
will be shown below. On the other hand, all effects that enter
the transport equations for u,u; and u;¢ through source terms
can be accounted for by an algebraic stress/flux model, as,
for example, body force effects (buoyancy, - rotation,
streamline curvature), nonisotropic strain fields, and wall-
damping influence. Algebraic stress/flux models can
therefore also simulate many of the flow phenomena that
were described successfully by stress-equation models. Some
examples will now be given.

The first example concerns the calculation of developed
flow in a square duct, where gradients of the Reynolds stresses
in the cross-sectional plane cause a secondary motion that is
not present under laminar conditions and is hence often
labeled “‘turbulence-driven.”” This motion cannot be
predicted with an isotropic eddy viscosity as employed in the
standard k-e model (in laminar flow the viscosity is isotropic).
A realistic simulation of the individual Reynolds stresses is
required in this case, and Reece?? and Naot and Rodi?*? have
shown that the Launder, Reece, and Rodi?’ model is capable
of doing this, but only with a somewhat more complex
pressure-strain model than that given in Eq. (9). Reece em-
ployed differential stress equations whereas Naot and Rodi
used an algebraic stress model. Figure 6 compares the
longitudinal velocity contours and secondary velocity
distributions predicted by both models with measurements.
The bulging of the velocity contours toward the corner, which
is due to the secondary motion, is reasonably well predicted
by both models and so are the secondary velocity profiles.
Differential and algebraic stress models yield about the same
degree of agreement with the experiments in this case.

As a second example, calculations are presented for the
curved mixing layer studied experimentally by Castro and
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Bradshaw.3 In the calculations, the curvature effects enter
automatically in the w,u; equations by writing these in a
curved coordinate system with the longitudinal coordinate s
along the centerline of the curved mixing layer (see Fig. 7a)
and the lateral coordinate normal to s. The calculations were
carried out in order to test whether the stress-equation and
algebraic stress models, without modification other than
expressing the equations in a curved coordinate system, can
predict the rather strong effects of streamline curvature on
turbulence observed in the experiments. Figure 7 shows
predictions obtained with three different turbulence models,
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one being the standard k-¢ model (in a curved coordinate
system, a curvature term appears in the k£ equation), the
second the stress-equation model using Eq. (9), and the third
an algebraic stress model that uses truncated forms of Eq. (9).
Figure 7a demonstrates that the growth of the layer width é
(for a definition see Ref. 35) is reduced significantly by the
curvature and that this is simulated well by the stress-equation
and algebraic stress models. In contrast, the standard k-e
model does not respond sufficiently to the curvature. Figure
7b presents the streamwise variation of the maximum shear
stress and kinetic energy. Both are reduced by the curvature,
but wv_,, is reduced more so that the structure parameter
uv/k is also decreased by the curvature. The stress-equation
and algebraic stress models simulate the influence of cur-
vature on both uv and k reasonably well, whereas the stan-
dard k-¢ model predicts only the streamwise variation of &
fairly well but badly underpredicts the fall of uv and thus does
not describe the observed behavior of the structure parameter
uv/k. It can be concluded that it is important to account for
the influence of curvature on the individual stresses and not
only on k and that both the stress-equation and algebraic
stress models do this successfully. )

To conclude this section, two further examples of
calculations with algebraic stress/flux models will be

presented. The first example is a plane wake in stably.

stratified media. An experiment was simulated in which a
ribbon was pulled through water having a linear stable
stratification, that is, where dp/dy was constant and negative.
The vertical turbulent fluctuations in the wake are damped by
the stable stratification, and the growth of the wake is thereby
strongly reduced. Hossain® has calculated this flow with an
algebraic stress model that is basically a k-¢ model with the
empirical coefficients ¢, and ¢, replaced by functions of some
local buoyancy parameter, where these functions are provided
by the algebraic stress/flux relations. Figure 8 shows that the
model simulates very well the reduction in wake spreading due
to the stable stratification. For comparison, results are in-
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cluded also of a calculation of a wake in an unstratified
medium, and here the model predicts the standard growth of
the wake as x”.

The last example is a plane wall jet in stagnant surround-

" ings. For this flow the standard k-¢ model predicts the

spreading rate (growth of the half width y,) too high by
about 30%. The reason is that this model does not account for
the wall damping of the lateral fluctuations. As this damping
influence is felt not only in the near-wall layer but also in the
free shear layer beyond the velocity maximum, it is respon-
sible for the reduced spreading rate compared with that of a
free jet. When the wall damping is accounted for by a wall
_correction to the pressure-strain model and when this is
retained in the process of reducing the u;u; equations to
algebraic expressions, the correct wall-jet spreading. is
predicted, as can be seen from Fig. 9, where the growth of the
half-width y, is compared with measurements. The
streamwise variation of maximum velocity and wall shear
stress is-also well predicted, but the location 6 of the velocity
maximum is too close to the wall because in this flow the
locations of zero shear stress and zero velocity gradient do not
coincide, whereas the algebraic stress model (being of the

" eddy viscosity type) predicts zero shear stress at the location

of the velocity maximum. The difference in locations can be
predicted only by use of a full stress-equation model,3? but it
is of little practical importance. The same feature can be
found in asymmetric channel flow with one rough and one
smooth wall and was predicted well with the stress-equation
model of Launder, Reece, and Rodi.?” Again, the separation
between the locations of zero shear stress and zero velocity
gradient is of little practical significance because it is only
about 0.05 of the channel width. Hence, an eddy viscosity
model would yield results of an accuracy sufficient for
engineering purposes also in this case.

In wall jets on convex surfaces, the locations of zero shear
stress and zero velocity gradient move apart with increasing
curvature, and the stress-equation model4! predicts this flow
correctly whereas preliminary calculations with the algebraic
stress model indicate the limits of this model for cases with
strong curvature. The stress-equation model, which accounts
for curvature in the same way as was discussed above for the
curved mixing layer, simulates correctly the increase of jet
spreading due to the destabilizing effect of the curvature.

Conclusions

In the past, the mixing-length model has been used widely
and with considerable success for calculations of simple shear
layers, and a great amount of experience has been collected on
the empirical specification of the mixing-length distribution in
such flows. The mixing-length hypothesis is, however, not

. suitable whenever turbulence transport and history effects are
important, and it is of little use for flows more complex than
shear layers because of the great difficulties in specifying the
mixing-length distribution in such flows. Further, extra ef-
fects on turbulence, such as those due to body forces, can be
accounted for in an entirely empirical way only. One-equation
models employing a transport equation for the kinetic energy
of turbulence account for transport and history effects and
are therefore superior to the mixing-length hypothesis for
such nonequilibrium shear layers where the length-scale
distribution can be prescribed realistically; they are, however,
not very suitable for complex flows where an empirical length-
scale determination is difficult. The simplest models for
calculating such flows are two-equation models employing an
additional transport equation for the length scale. Among
these, the k-e model has been tested most widely and has been

~ shown to predict, with the same empirical input, many dif-

ferent flows, including separating and complex three-
dimensional flows, with an accuracy sufficient for practical
purposes. The eddy viscosity concept itself and, more im-
portant, the use of an isotropic eddy viscosity in the k-e model
do not, however, describe certain important flow phenomena.
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Stress/flux equation models simulate the turbulence processes
more realistically and are capable of describing many of the
features that defy simulation with an isotropic eddy viscosity
model. Further, extra effects such as those due to body forces
enter automatically as a consequence of the derivation of the
stress and flux equations. Models of this type are rather
complex and computationally expensive so that they are not
very suitable for practical applications. They are important,
however, as starting points for deriving algebraic stress/flux
expressions that are able to account for most of the effects
described by the full equations. There seem to be only a few

engineering problems where a full transport-equation model is -

needed.
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